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Abstract

The increase in large science focused computational frameworks has raised
many issues involving the ability to maintain accurate scientific benchmarks through-
out the ongoing evolution of the code. These science based tests allow not only
developers access to the latest updates, but the science users aswell. It is these
scientific tests required for geodynamic code benchmarking in a HPC environment
that are investigated. The importance of benchmarking in computational science,
for both quality assurance and reliability, is discussed and a case study for ther-
mochemical convection modelling is presented. The implementation of automated
testing for science units is described with particular attention to the problems arising
from science tests compared to traditional computational tests.
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1 Introduction

Our research group is in the process of developing a general-purpose, parallel, solid-mechanics / fluid

dynamics Lagrangian-Integration-Point finite element code primarily for use in geodynamics research.

The project is multi-institutional and multi-disciplinary. It involves the simultaneous development of

three codes: 1) a supporting framework code, 2) a generalized solver for handling governing mathemat-

ical equations, and 3) a code aimed towards modeling geological materials with complex constitutive

behaviours. The codes are community-developed and have a tiered structure of dependency, so modifi-

cations made by developers at the low-level need to be seamlessly integrated by those working higher

up at the science application level.

In a research environment the end-use-cases for the code are continually being refined as new

models are run and new discoveries are made. We have adopted a very flexible approach to the code

development with a short cycle of implementation, checking, release and redesign. The operation of

the code is as modular as the inherent cross-coupling of the physical processes will allow. The code has

to run within the environment of various parallel supercomputers which are far from homogeneous.

This leads to an interesting environment for testing the code. Firstly, the hierarchical nature of the

system places a strong emphasis on reliability as no testing of the higher levels is possible until the

underlying levels have passed appropriate tests. However, due to the continually evolving requirements

at the scientific level, it is not possible to freeze the framework or solver code once it has been tested.

Secondly, the scientific applications are written for an active research environment where the precise

characteristics of the modeled phenomena are uncertain. At the mathematical level, the concept of a

unit test corresponds to isolating a particular component of the system of equations which has a known

analytic solution, correspondance to a documented experimental result, or well-established commu-

nity benchmark. At the system level, it is commonly necessary to involve the research community in

evaluating the code. We therefore allow system tests which try to distinguish between total failure, ac-

ceptable numerical error and “important” changes in behaviour even if they are within error. This last

category of feedback is to signal changes which may cause concern to an experienced numerical ana-

lyst. Finally, in a grid-computing environment where the code is running as a web-service, the testing

environment provides a capability audit of the installed system in a particular operating environment.

Thus, in a situtation where not all the possible modules are supported, the code will know that it can

offer a limited set of services.

At the scientific level, much of the testing environment necessarily involves human intervention.

The role of the automated testing environment is then to provide a comprehensive overview of the sys-
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tem state, highlight problem areas, and highlight correlations between failures, changes in behaviour,

and code updates. In this paper, we discuss these issues with reference to examples taken from com-

putational geodynamics.

2 Problem Description

2.1 Geodynamics

In computational geodynamics we are concerned with the stresses and corresponding motions on the

surface and within terrestrial planets. In order to model, for example, mantle dynamics we use the

principles of conservation of mass, energy and momentum as well as assuming an incompressible,

boussinesq fluid to model thermal convection. This leads to the governing equations

∇ · v = 0
∂T
∂t
+ v · ∇T = Q(T ) + κ∇2T

η∇2v = ∇p + gρẑ

(1)

where v is the cartesian velocity vector, T is temperature, Q(t) the heat source, κ thermal diffusively,

η viscosity, p pressure, g gravity and ρ density. It is usual to work with a non-dimensional system of

equations to improve numerical accuracy as we solve for very small velocities (cm/yr) driven by very

large stresses ( 108 − 109Pa) acting on fluids with very large viscosity (1019−23Pas). Once rescaled, the

equations can then be solved efficiently using a particle-in-cell finite element method (7) (8).

2.2 Code Description

The code used for our geodynamic modeling is a parallel, particle-in-cell finite element code with a

modular structure designed to encourage rapid prototyping of new scientific modeling concepts. A

plugin infrastructure allows for highly complex mechanical models to be implemented efficiently (and

safely from the point of view of other users of the code). This is achieved by the addition of either

numerical or scientific applications at various entry points which are called during the code’s execution.

Modules cannot be firewalled from each other or prevented from interacting, as the physical process
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which one module implements is often strongly physically coupled to processes implemented in other

modules. Each plugin needs to work both in isolation and interacting as part of a larger system.

gLucifer

Underworld

Particle-in-
Cellerator

StGFEM

StGermain

Figure 1: Structure of the geodynamics code. Each of the blocks in this diagram is a collection of modules with related
functionality. The base layer, StGermain, provides low level parallel infrastructure for scientific computing;
StgFEM provides specialization for dealing with distributed finite element problems; the Particle-in-Cellerator
provides the Lagrangian integration and Lagrangian constitutive model frameworks. There is a hierarchy of
dependencies between each of these blocks. gLucifer provides parallel visualization and the operators needed to
construct new visual objects for all of these blocks. Underworld interacts most strongly with the highest level of
the hierarchy, but may contain its own plugins for any of the deeper levels.

Underworld is the specialised part of our code aimed towards modelling geological materials with

complex constitutive behaviours. It utilises the plugin environment to build upon a science-neutral

finite element modelling framework. It describes, for example, the initial and boundary conditions, the

material properties, and rheological laws specific to geodynamics.

The Particle-In-Cellerator (PICellerator) is a separate package that implements the Particle-In-Cell

intergration schemes for the science neutral finite element framework. Underworld assumes this inte-

gration scheme in the implementation of its material-history-dependent rheological laws.

StgFEM is a framework for developing science netural finite element codes. It is broken into two

sub-frameworks, one for creating finite element discretisations and one for creating systems of linear

equations. It utilises the linear solver package PETSc.

StGermain is a fundamental supporting framework for developing extensible scientific codes and
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frameworks. It provides the implementation for plugins and associated infrastructure.

gLucifer (10) is the visualisation framework used with and developed for StGermain. It provides

interactive and background rendering for serial and parallel applications running on local and remote

machines. Images and movies are created during run time, allowing for timely analysis of results. This

visual output can be a key method for determining if the code output is valid.

2.3 Development Team

The development team consists of a broad range of loosely interacting scientist and programers across a

number of organisations. The team has organised goals but is also encouraged to developed code in an

organic fashion. This is particularly prevalent for the science applications. Each plugin is developed

individually, to meet the needs of a specific researcher. The plugin is also available to the wider

community, interacting with many other modules in configurations not anticipated by the original

author.

It is important to ensure each developer is aware of this possibility when designing new applica-

tions, ensuring they are not only free from software bugs, but scientifically accurate as a stand alone

product and as a dynamic, interacting piece of the larger framework. The plugins should be developed

with an acknowledged robustness, enabling usage outside its original specifications.

2.4 Testing responsibility & requirements

The science tests for a given plugin should be the responsibility of the individual developer &/or team.

The development of these test is a non trivial task, and should be considered an integral part in the

development of scientific models.

To correctly assess the plugins effect on the system it must interact in a safe and predicable way.

Each plugin, before it can be integrated into a stable release of the code, needs to be accompanied by

a series of test-cases and the expected results. It should be possible to run in a “do nothing” mode by

setting particular combinations of parameters. The plugin loads and executes all of its code, but the

physical processes have no effect with this particular combination of settings. Where possible, param-

eter combinations which reproduce the behaviour of other plugins should be given. For example: a

visco-elastic deformation module should be able to reproduce viscous behaviour if the elastic modulus

is infinitely large.
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3 Benchmarking

3.1 Why benchmark codes ?

The classical way of verifying physical modeling codes is to compare results with simple analytic

solutions, experimental observations, scaling results and other versions or codes. This process is known

as benchmarking.

Carefully chosen, relatively simple benchmark problems allow us to gain confidence that the results

of more complex problems are reliable. Benchmark problems are an important component of the peer

review assessment of scientific work based upon modelling.

One of the challenges in developing benchmarking problems is to design simple tests with well-

understood solutions which can be “incremented” to include new physical effects. A good example

comes from convection: the linear diffusion equation can be solved analytically and therefore easily

tested. Advection is harder to test in isolation and becomes a case requiring specialised advection

schemes. Advection-diffusion as a coupled problem is easier to solve numerically and is therefore

used to benchmark both diffusion and advection.

3.2 Bug detection versus error detection

It is important as a modeller to “know your code”. It can only provide an approximate solution to the

mathematics. Benchmarking helps in this characterisation, looking at whole sub-systems of the code.

It is therefore only possible once at least one component of the system of equations can be solved.

Benchmarks are designed to detect inaccuracies in the implementation of the algorithm. Incom-

patibilities between plugins, (in)appropriate choices of discretisation resolution, and an (in)appropriate

match between the chosen algorithm and the nature of the mathematics. Benchmarks are are designed

to identify inaccuracies in the science, not to flush out bugs in the framework but are sensitive to their

existence.

3.3 Good Benchmarks

The classic benchmark is appropriate for relatively simple models, where analytical solutions exist, or

those with only a small number of interacting components. The process becomes increasingly difficult

with the complexity of models. The ideal benchmark problem should be fast, with deviations from

expected results appearing within the system during early stages of testing and should try to isolate
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one of the mathematical components of the full problem.

A benchmark problem should ideally be sensitive to algorithm change — for example by ensuring

that it lies near a bifurcation between strongly different regimes. Small changes in the model may

then push to the solution into another part of the phase space, through a period doubling, from a time-

independent to time-dependent condition, or past a catastrophic transition. The overall model results

may still be within acceptable accuracy limits as defined by a pass/fail test but the change in behaviour

should always be documented.

Changes in model results should always be highlighted as part of a testing / benchmarking regime

even if they indicate a reduction in error relative to simple models: reproducibility of model results

is paramount. This change in behaviour, whether considered degrading or improving may also have

significant effects on dependants or particular applications. For example, a method for tracking com-

positional interfaces(5) commonly used in geodynamics relies on correcting known properties of the

chosen advection scheme to reduce numerical diffusion. A “helpful improvement” of the advection

scheme to a more accurate, higher order scheme would immediately break this algorithm.

4 Case study: Thermochemical Convection

Thermochemical convection problems frequently arise in geodynamics including, for example, the

behaviour of chemically buoyant continental crust overlying the mantle and the entrainment of the

dense, low lying D” layer at the base of the mantle. The mathematical description of thermochemical

convection is that of thermal convection outlined in equation 1 with the addition of a compositional

buoyancy force and a compositional conservation equation (pure advection of material domains).

The non-dimensional equations governing thermochemical convection are therefore given by

∇ · v = 0
∂T
∂t
+ v · ∇T = Q(T ) + κ∇2T

∂C
∂t
+ v · ∇C = Q(C) + κ∇2C

η∇2v = ∇p + (RaT − RbC)ẑ

(2)
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where

Ra =
gα∆ρd3

κη
,Rb =

gβ∆ρd3

κη
(3)

with C being composition, Q(C) the compositional buoyancy term and β compositional equivalent

of the thermal expansivity.

For thermochemical convection, a strongly non-linear phenomenon, many individual plugins and

modules within the code must be used: diffusion-advection schemes, particle transport and integra-

tion schemes, and momentum solvers. One difficulty surrounding these high-level problems lies in

identifying unexpected emergent behaviour which results when the modules are combined. Positive

outcomes for individual module tests will not necessary yield accurate benchmark results.

Automated testing of high-level simulations is not as straightforward as achieving a single number

result within a specified accuracy. For these simulations there is no single solution which is widely

considered to be ’correct’, whether experimental or numerical. It is therefore often more important to

reproduce scaling behaviour than a single number for comparison. It is these tests which can not only

be complicated to develop, but time consuming to perform throughout development.

4.1 Thermal advection-diffusion schemes

In order to solve for the energy equation used in infinite prandtl number, boussinesq fluid solutions

we must implement an advection-diffusion solver. To test the accuracy of our implemented solver,

results are benchmarked to the published numerical examples of a streamline upwind, petrov-galerkin

formulation for convecting flows by of Brooks and Hughes (1982) (2).

These simulations solve the linear advection-diffusion equation for a range of problems, as de-

tailed in section 3.4.2 of (2). These include skewed advection for homogenous, natural and essential,

boundary conditions and the advection of a cosine hill in a rotating flow field. Test results for these

simulations are shown in figure 2. The results are compared for each nodal value, with the deviation to

the published figures tested to ensure accuracy.

4.2 Momentum solver

The momentum solver is used for both the continuity and momentum equation, solving for stokes flow.

To test the accuracy of the scheme, the common stokes flow problem of driven cavity flow is used, as

outlined in Hughes (1987) (3). This simulation solves stokes flow within a box with free-slip boundary

conditions, Vx = 0, along the bottom and sides, with Vx = 1 along the upper boundary, as shown in
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Figure 2: Results for the advection-diffusion scheme benchmark as detailed by (2). Advection skew to mesh with homoge-
neous natural outflow boundary condition vx = cos(φ) vy = sin(φ) with (a) φ = 22.5, (b) φ = 45 and (c) φ = 67.5.
Advection Skew to mesh with homogeneous essential outflow boundary condition vx = cos(φ) vy = sin(φ) with
(d) φ = 22.5, (e) φ = 45 and (f) φ = 67.5. Advection of a cosine hill (g).

figure 3.

The resulting Vrms trends for the implemented scheme can then be compared to those of previously

calculated results.

4.3 Thermal convection benchmarks

Thermal convection, with instabilities driven by thermal density gradients, requires both energy and

momentum solvers, and thermal advection diffusion routines. The momentum equation must also be

solved for a thermal buoyancy forcing term. The benchmark standard for isoviscous thermal convection

codes is outlined in case 1 of Blankenbach et al (1989) (1).

Simulations are run for a range of Rayleigh numbers in a box of aspect ratio 1. The resulting steady

state Nusselt number, the ratio of convective to diffusive heat transport, shown in figure 4, and Vrms

values are used to determine accuracy.
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Figure 3: Benchmarking test results used for momentum solver as outlined in (3). Lid driven convection problem with
free-slip bottom and side boundary conditions with an upper boundary condition of Vx = 1 along the central
nodes, and V x = 0 along the 2 edge nodes on both sides. The velocity vectors are shown at time step 3.

4.4 Particle advection schemes

In order to model materials with different properties particles are included in the simulation. These

particles are assigned material properties, including density and viscosity. The particles are moved

through the velocity field using advection schemes.

The accuracy of the particle advection scheme can be assessed by testing the tracing of passive

markers (Appendix C of van Keken et al (1997) (4)). The accuracy is tested by the deviation in the

particles position after one complete cycle of a steady state flow, as shown in figure 5.

The test available for the individual solution schemes are relatively straight forward. The momen-

tum solvers, thermal advection diffusion and particle advection schemes can be tested accurately to

ensure correct simulation results. Complexities arise when these schemes are brought together with

particle integration methods to model geodynamic problems like that of Rayleigh-Taylor instabilities.

4.5 Rayleigh-Taylor convection and particle integration schemes

The instabilities within Rayleigh-Taylor convection are caused by compositional density variations,

with the forcing term applied to the momentum equation being compositional buoyancy. The particle

advection and integration schemes therefore need to be tested for accurate modelling.

There are many different integration schemes available to apply the weightings to specific particles
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Figure 4: Nusselt number against dimensionless time for thermal convection as detailed in (1). Results are used to bench-
mark thermal convection, using one cell convection in a box with free-slip boundary conditions of dimension 1×1
are allowed to evolve to a steady state (inset). The resulting steady state Nusselt number for Rayleigh numbers
ranging from 104 to 107 are used as a benchmark, testing the advection diffusion, energy and momentum solvers
for accuracy. The Nusselt number against time and the steady state temperature field are shown.

with respect to the local coordinates and material properties. The simulations shown in figure 6 are

produced using approximately 20 particles per element which are initially spread uniformly throughout

the domain.

The benchmark used to test the Rayleigh-Taylor simulations is outlined in van Keken et al (1997)(4),

with our results shown in figure 6. The variations between these solutions, a result of differing res-

olution, grow with time. Hence, after a relatively short period the solutions diverge, with distinct

instabilities within the boundary layers of figure 6(a) growing at a faster rate than those of figure 6(b).

4.6 Thermochemical benchmarks

Modelling thermochemical convection requires an application incorporating all of the previously men-

tioned equations and solution methods. This introduces interdepencies at all levels, thereby increasing

the complexity of the system remarkably.

The benchmark used for these simulations is again outlined in van Keken et al (1997) (4). Our

simluation results shown in figure 7 match those published in figure 8 for t = 0.01 and figure 12a of

(4). The entrainment rate of the dense fluid into the overlying fluid is also used as a measurable in this

benchmark, however the published results to diverge within a short time.

Unlike thermal convection, that converges towards the single solution, the solutions diverge once
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Figure 5: Benchmarking result for the particle advection scheme as detailed in (4). The advection of tracer particles through
a constant velocity field by the stream function ψ = ψmaxsin(πx)sin(πy), where ψmax =

250
π

. The original position
of the particle is (0.5, arcsin(0.05)

π
and the particle should tracer around streamline π = 0.05 until it finishes one

revolution at time 0.2204.

particles are involved. We therefore have the complexity of models increasing with possible bench-

mark measurements decreasing. Quantifying individual routines for accuracy can be straight-forward,

however measuring their interactions is not.

How do we then attempt to automate these benchmarkings into an ever evolving framework? En-

suring many different groups working on a range of geodynamic problems have access to the most

up-to-date and accurate code.

5 Automated Testing of Benchmark Solutions

The aim of automated science tests is to achieve benchmarking of both interacting and isolated science

components as unit tests. This is a shift from the current perception of benchmarking as an operation

on a complete code to an action on a specific unit within the code. It requires seeming effortless test

creation for the science implementer, a computational scientist not a programmer. It also requires the

ability to break science into appropriately sized units, as demonstrated above.

To achieve a solution satisfactory to both scientists and programmers, benchmarking is imple-

mented in three phases: the modular/unit-based code, the ability to have unit tests and finally the

development of science testing tools.
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Figure 6: Benchmarking results for Rayleigh-Taylor convection as detailed in (4). The motion of an initially low, lying
buoyant layer is tracked through time with the location of the initial maximum Vrms and Nusselt numbers used
to measure accuracy. The particle field at dimensionless time t = 1200 for a resolution of (a) 64×64, (b) 128×128
is shown.

5.1 Modular/Unit-based coding

Object oriented programming is typically shunned in scientific codes. In HPC environments there is

a perceived loss of performance associated with the encapsulation of data and methods. Course-grain

Object Orientation does not severely affect performance with respect to the ability to maintain code(9),

and languages such as C can have interfaces created to enable the methodology.

StGermain enables the detangling the ‘spaghetti’ code once typical in scientific applications into

course-grained ideas. It provides three mechanisms for describing objects: Classes, Components and

Plugins. Classes suit the fine grain objects that have a role within the infrastructure, but typically not

scientific concepts. Components are used to represent objects that can be configured to interact with

others at run time. They are typically course-grain concepts, a mesh or a linear algebra solver.

These components and classes interact to form the system. Plugins are used to introduce new

component types, change the configuration or behaviour of the system. The plugins are typical of

scientific units. For example, a plugin used to modify rheology adds to the material properties and

modifies the rheological law, but is not a class per se. Classes, components and plugins are then

considered units and are subjected to unit tests.

In the case study we outlined the key science units needed for thermochemical convection.

The advection diffusion schemes and momentum solvers are special cases of a system of linear
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Figure 7: Benchmarking results for thermochemical convection as detailed in (4). The entrainment of a low, lying dense
layer by thermal convection is evolved through time. The (a) temperature field (top left) (b) particle field (bottom
left) and (c) Vrms trend against dimensionless time (right) are shown and used to access accuracy.

equations abstract component of StgFEM. The algorithms that implement these pieces of science have

their own established benchmarks which is used as the unit test to that component.

The thermal convection benchmark is applicable to the system when both advection diffusion

schemes and momentum solver components are in use. In this case the unit test is more like a sys-

tem test or benchmark.

On the other hand, in the Rayleigh-Taylor instability model, the given particle integration and

advection schemes are implemented via plugins. They customise the system into a particular configu-

ration. With each configuration having their own unit tests for specific behaviour. The thermochemcial

benchmark is a system test of the given configuration.

5.2 Enabling unit tests

The code’s build system needs to be developed to support testing. There is a clear benefit in auto-

matically building the tests with the code, and disabling any ability to switch this feature off. For the

developer, this links ascertaining confidence in the supporting code with the development process. The

computational scientist’s work flow evolves from “changing the code, building the code and running

the code” to “changing the code, developing tests, building the code and tests, optionally running the
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tests, and then running the code”.

Building the tests ensure that interface changes are trapped early, which in turn reduces the changes

of code forks, replication of implementations and their tests. Where the development is done by a

community of developers, then automation of the regression test becomes important.

Some infrastructure is required to build simple unit tests. StGermain provides an elementary set

of features: selective printing, fire-walling and difference checking. Output streams are toggled on or

off per unit at the user’s discretion. A test may hardwire a unit’s output to be on, where it would be

otherwise disabled during production runs. Firewalls are effectively a print on assertion combination,

thus simplifying the interface to a check of state within a unit. The build system itself is capable

of comparing whether the output is identical to an expected outcome, enabling rapid testing without

requiring any additional code.

Some of the initial science unit tests are already included in the testing suite, including the advection-

diffusion schemes and momentum equation solvers. These regression tests are currently conducted

automatically. We are left with the science tests, the benchmarks for Thermal, Rayleigh-Taylor, Ther-

mochemical convection and the other geodynamic science tests as required by the user base.

5.3 Development of science level unit tests

At some point, the actual items within a unit being tested begin to have scientific meaning. For ex-

ample, in thermochemical convection Nusselt number trends, temperature and particle fields may be

subjected to comparison with an expected result. There are many reasons why these results may nu-

merically differ but the scientific judgement considers them equivalent. One reason may be numerical

accuracy of the hardware, another may be the use of another linear algebra solver.

Typically a scientist will subjectively assess the results via a visualisation in a suitable represen-

tation. In an automated system, this is not practical, and some mathematical operation is needed to

reduce the judgement to one number within a tolerance. In simple cases convergence tests are suit-

able and implementation of convergence tests methods typically utilised by linear algebra solvers is

possible. In the case of a high-level science test, these automated recursive testing becomes more

complicated.

Testing the code manually using benchmarking problems is very accurate. We can easily ascertain

the accuracy of many of the more complicated tests both visually and quantitatively through the Nus-

selt number or Vrms values. It is a combination of the quantitative results and the subjective visual

appearance of the simulation at specific times which provides the benchmark. The visual check gives
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us confidence in these global measurements. These visual checks are more difficult to automate than

the calculated measures. This is particularly true when particles are involved. How do we measure

the motion of individual plumes? To have a completely automated benchmarking test suite, we would

need to implement some type of ’face’ recognition software. A fix for this issue is to maintain the

manual visual check through automated outputs which can be verified as required.

Simulations for thermal convection at high Rayleigh number or to resolve thermochemical convec-

tion require long periods of time to accurately produce results. Determining the resolution required

for solutions to be resolved is also important. It is therefore preferable to run each science test for a

range of resolutions and thus detail the required resolution as this may also change with the evolution

of the code. These time increases are an important factor to consider during automation. The test will

be produced frequently hence the cumulative time for these tests quickly becomes significant. It is also

important to note that science tests should be run on a range of platforms. The resulting accuracy cal-

culated, resolution required and visual checks also need to be published throughout the developer and

user communities. Thus providing all parties with up-to-date information on the accuracy, resolution

and versions required for the models.

In a grid computing environment we expect that the code will be providing a number of high-level

science services. In our example, the code would provide both thermal and thermo-chemical convec-

tion solutions on request. As the code builds and installs, automated testing provides information on

which of these services can be supported, and at what grid resolution successful results have been ob-

tained (in serial and in parallel). This allows the code, built at different sites across the grid, to advertise

the appropriate services with the additional information of which resolutions can be run on the local

hardware, what level of parallelism is available, and, potentially, the likely performance.

6 Conclusion

The automation of science based testing within our framework will not only ensure that all members

of the development and user community have access to the most accurate code at all times, it will also

raise the importance of the science tests to the level of traditional system tests. It is no longer acceptable

to simply have a working code, it must also be able to solve many, varied geodynamical problems at

high resolution. While this has been possible for a long while, the short cycle of implementation and

large base of end users has made it difficult to ensure all science aspects of the code are operational

on demand. Implementing automated science testing will ensure all participants, both developers and
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users, are aware of the status and version required for the end product which is, after all, the science.
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